

Photon production from gluon fusion in heavy-ion collisions

Alejandro Ayala*, J. Castaño-Yepes, C. A. Dominguez, L. Hernández

(*) Instituto de Ciencias Nucleares, UNAM ayala@nucleares.unam.mx

11th international workshop on High-pT Physics in the RHIC & LHC Era, BNL April 2016

PHENIX, Phys. Rev. C 91, 064904 (2015)

ALICE, Phys. Lett. B 754, 235-248 (2016)

Outline

- ▶ Thermal photon excess as of 2014
- ► Current status: Data vs. models
- Magnetic field effects as a source of excess yield
- Gluon fusion into photons
- Conclusions

5

PHENIX compared to models as of 2014: Yield underestimated

- Transport model: Linnyk, Cassing, Bratkovskaya, Phys. Rev. C 89, 034908 (2014)
- Fireball model: van Hees, Gale, Rapp,Phys. Rev. C 84, 054906 (2011)
- ► Hydro model: Shen, Heinz, Paquet, Gale, Phys. Rev. **C** 89, 044910 (2014)

PHENIX compared to models as of 2014: Yield underestimated

PHENIX compared to models as of 2016: improvement C. Shen e-Print: arXiv:1601.02563

J.-F- Paquet et al., arXiv:1509.06738

Summary of photon excess yield and flow:

- Models have improved (including updated photon emission rates, viscosity, IP-Glasma)
- Models consistent with yield within the (lower part of) uncertainties
- v₂ still not well described
- ▶ v₃ better described than v₂

Magnetic field in heavy-ion collisions

Charge separation along the magnetic field

W. Broniowski, W. Florkowski, Phys. Rev. C 65, 024905 (2002)

Photons from magnetic field

 Trace anomaly converts energy-momentum of gluon bulk into photons
 G. Basar, D. Kharzeev, V. Skokov Phys. Rev. Lett. 109, 202303 (2012)

 Photon emission by quark synchrotron radiation
 K.Tuchin, Phys. Rev. C 91, 014902 (2015)

Photon production from gluon fusion

- ▶ Gluons are far more abundant than quarks at early times
- ▶ Largest magnetic field intensities and largest temperatures at early times of the collision
- ▶ Diagrams have same relative sign in the presence of magnetic field

Fermion propagator in magnetic field

The fermion propagator in coordinate space cannot longer be written as a simple Fourier transform of a momentum propagator

$$S(x,x') = \Phi(x,x') \int \frac{d^4p}{(2\pi)^4} e^{-ip\cdot(x-x')} S(p)$$

where

$$\Phi(x,x') = \exp\left\{iq_f \int_{x'}^x d\xi^{\mu} \left[A_{\mu} + \frac{1}{2}F_{\mu\nu}(\xi - x')^{\nu}\right]\right\}$$

is called the phase factor

Matrix element

$$\mathcal{M}^{(a)} = -\int d^4x \int d^4y \int d^4z \int \frac{d^4p}{(2\pi)^4} \int \frac{d^4q}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4}$$

$$\times e^{-ip\cdot(y-x)} e^{-iq\cdot(z-y)} e^{-ik\cdot(x-z)} e^{-iu\cdot z} e^{-iv\cdot y} e^{ir\cdot x}$$

$$\times \operatorname{Tr} \left[iq_f \gamma_{\mu} iS(k) ig \gamma_{\alpha} t^c iS(q) ig \gamma_{\nu} t^d iS(p) \right]$$

$$\times \Phi(x,y) \Phi(y,z) \Phi(z,x) \epsilon^{*\mu} (\lambda_r) \epsilon^{\alpha} (\lambda_u) \epsilon^{\nu} (\lambda_v).$$

Fermion propagator in magnetic field: Intense field ⇒ Lowest Landau Level

The piece of the propagator S(p) in momentum-space

$$iS(p) = \int_{0}^{\infty} \frac{ds}{\cos(q_f B s)} e^{is(p_{\parallel}^2 - p_{\perp}^2 \frac{\tan(q_f B s)}{q_f B s} - m_f^2 + i\epsilon)}$$

$$\times \left[\left(\cos(q_f B s) + \gamma_1 \gamma_2 \sin(q_f B s) \right) \left(m_f + \not p_{\parallel} \right) - \frac{\not p_{\perp}}{\cos(q_f B s)} \right]$$

$$\stackrel{LLL}{\longrightarrow} 2ie^{-\frac{p_{\perp}^2}{q_f B}} \frac{\left(\not p_{\parallel} + m_f \right)}{p_{\parallel}^2 - m_f^2} \left[\frac{1 - i\gamma_1 \gamma_2}{2} \right]$$

The operator

$$\mathcal{O}_{\parallel} = \left[1 - i\gamma_1\gamma_2\right]/2$$

projects onto the longitudinal space. Therefore the matrix element can be factorized into a product of transverse and longitudinal pieces

Matrix element fractorizes into product of transverse and longitudinal pieces

$$\mathcal{M}^{(a)} = (2\pi)^{4} \delta^{4}(r - v - u) \mathcal{M}^{(a)}_{\perp} \mathcal{M}^{(a)}_{\parallel}$$

$$\mathcal{M}^{(a)}_{\perp} = \left(\frac{4\pi}{q_{f}B}\right)^{2} \int \frac{d^{2}p_{\perp}}{(2\pi)^{2}} \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}}$$

$$\times e^{\frac{k_{\perp}^{2}}{q_{f}B}} e^{-\frac{q_{\perp}^{2}}{q_{f}B}} \prod_{i,j=1,2} e^{i\frac{2}{q_{f}B}\epsilon_{ij}(q-k+u)_{i}(q-p-v)_{j}}$$

$$= \left(\frac{q_{f}B}{12\pi}\right) e^{-\frac{(u+v)_{\perp}^{2}}{3q_{f}B}},$$

$$\mathcal{M}^{(a)}_{\parallel} = -8 \left(\frac{q_{f}g^{2}\delta^{cd}}{2}\right) \int \frac{d^{2}p_{\parallel}}{(2\pi)^{2}} \int \frac{d^{2}q_{\parallel}}{(2\pi)^{2}} \int \frac{d^{2}k_{\parallel}}{(2\pi)^{2}}$$

$$\times (2\pi)^{4} \delta^{2} \left[(q-k+u)_{\parallel}\right] \delta^{2} \left[(q-p-v)_{\parallel}\right] \epsilon^{*\mu}(\lambda_{r})$$

$$\times \frac{\text{Tr}\left[\gamma_{\mu} k_{\parallel} \mathcal{O}_{\parallel} \gamma_{\alpha} \not q_{\parallel} \mathcal{O}_{\parallel} \gamma_{\nu} \not p_{\parallel} \mathcal{O}_{\parallel}\right]}{k_{\parallel}^{2} q_{\parallel}^{2} p_{\parallel}^{2}} \epsilon^{\alpha}(\lambda_{u}) \epsilon^{\nu}(\lambda_{v})$$

Early stages, gluons more abundant, quarks don't thermalize

- ▶ Hierarchy of energy scales $\sqrt{eB} > T > m$
- Early stages gluons far more abundant than quarks
- Assume quarks do not yet thermalize.
- $m_f = 0$ since in the absence of thermal corrections, the light-quark vacuum masses are negligible.
- ► The trace contains the product of up to twelve gamma matrices. Upon squaring and summing over polarizations, only a small piece survives

$$\begin{array}{cccc} \operatorname{Tr} \left[\gamma_{\mu} \not k_{\parallel} \mathcal{O}_{\parallel} \gamma_{\alpha} \not q_{\parallel} \mathcal{O}_{\parallel} \gamma_{\nu} \not p_{\parallel} \mathcal{O}_{\parallel} \right] & \longrightarrow & k_{\parallel \nu} (p_{\parallel \mu} q_{\parallel \alpha} - p_{\parallel \alpha} q_{\parallel \mu}) \\ & + & k_{\parallel \mu} (p_{\parallel \nu} q_{\parallel \alpha} + p_{\parallel \alpha} q_{\parallel \nu}) \\ & + & k_{\parallel \alpha} (p_{\parallel \nu} q_{\parallel \mu} - p_{\parallel \mu} q_{\parallel \nu}) \end{array}$$

Kinematical simplifications

- ► For photons emitted at mid-rapidity, momentum components along the reaction plane are small.
- Reaction plane is perpendicular to the magnetic field then $r_{\perp}=(u+v)_{\perp}\simeq 0.$
- ▶ Focus on photons with small momentum $r_3 = (v + u)_3 \simeq 0$.
- Focus on describing emission of real photons $r^2 = (u+v)^2 = 0$.
- ▶ The main thermal effect on low momentum gluons is the development of a **thermal mass** $m_g \sim gT$.

$$\frac{r_0 dN}{d^3 r} = \frac{1}{2(2\pi)^3} \int \frac{d^3 u}{2u_0(2\pi)^3} \int \frac{d^3 v}{2v_0(2\pi)^3} \times \sum_{\text{pol},f} |\mathcal{M}|^2 n(u_0)n(v_0)$$

$$\frac{1}{2\pi N r_t dr_t} = \frac{\left[\left(\frac{1}{3}\right)^4 e^{-2\frac{y_0^2 r_t^2}{eB}} + \left(\frac{2}{3}\right)^4 e^{-\frac{y_0^2 r_t^2}{eB}} \right] \frac{I(r_t/T)}{2\pi}}{\sqrt{3\pi eB/2} \left[\left(\frac{2}{3}\right)^{9/2} + \left(\frac{1}{3}\right)^{9/2} \right] \int_0^\infty dr_t I(r_t/T)}$$

$$I(z;\lambda) \equiv \int_0^z \frac{dx x^2 n \left(\sqrt{(z+x)^2 - (2x)^2}\right) n(x)}{\left(\sqrt{x^2 + \lambda^2}\right) \left(\sqrt{(z+x)^2 - (2x)^2 + \lambda^2}\right)}$$

Magnetic field strength with time and impact parameter

L. Adamcyk, et al. (STAR COllaboration), Phys. Rev. Lett. 113, 052302 (2014)

Centrality vs. impact parameter

W. Broniowski, W. Florkowski, Phys. Rev. C 65, 024905 (2002)

Excess photon yield from magnetic field induced gluon fusion compared to McGuil hydro

A.A., J. Castaño-Yepes, C. A. Dominguez, L. Hernández, arXiv:1604.02713

- ▶ $T = 300 \text{ MeV for } \sqrt{s_{NN}} = 200 \text{ GeV (RHIC)}$
- ► T = 350 MeV for $\sqrt{s_{NN}} = 2.76$ TeV (LHC)
- ▶ g = 1
- $0.5 \times 10^4 < eB/(\text{MeV})^2 < 10^5 \text{ for RHIC}$
- $eB/(MeV)^2 \simeq 10^4$ for LHC

Conclusions

- Magnetic fields originate observable phenomena in heavy-ion collisions
- Magnetic field induce processes otherwise now allowed such as emission of photons from gluon fusion
- ► Size of excess yield can be accounted for using reasonable values for *eB*, *T* and *g*.
- ▶ Magnetic fields naturally induce asymmetry (v_2) .
- ▶ v₃ seems to be better described by models without magnetic field than v₂.